

Advanced MS: Limitations

- Walking impairment
- Loss of physical fitness
 - Strength, aerobic capacity, balance, body composition
- Symptoms
 - Fatigue, depression, pain
- Quality of life
- Participation in daily activities
- Illinnis.edu

Why Exercise for Advanced MS?

- Importance
 - Limited options for therapy
 - DMT not effective long-term
 - Need alternative approaches to restore and maintain function and independence

Solution: Adapted Exercise

 Adapted exercise approaches:

 Modified exercises, training approaches and/or equipment that is accessible for individuals with advanced MS

Potential Approaches for Exercise

- 1. Body-weight supported treadmill
- 2. Recumbent stepper
- 3. Adapted home-based resistance exercise
- 4. Functional electrical stimulation cycling

Body-Weight Supported Treadmill Training

- Long-term potential:
 - Limited to specialized training centers
 - High costs
 - Therapist-assisted training inefficient and may limit patient contribution to training
 - Potential as short-term gait rehabilitation tool to regain mobility and function

Illinois.edu

Potential Approaches for Exercise

- 1. Body-weight supported treadmill
- 2. <u>Recumbent stepper</u>
- 3. Adapted home-based resistance exercise
- 4. Functional electrical stimulation cycling

Recumbent Stepper Training

• Approach:

1

illinnis.edu

- Bilateral, reciprocal arm and leg pedals – coupled action
- Large foot pedals, rotating seat,
- arm and leg strapping
- Provides full body aerobic exercise in seated position

Recumbent Stepper Training

• Evidence:

- No published training studies in MS
- Improved fitness in healthy sedentary
- Benefits reported in older adults, stroke and PD patients
 - Improved blood pressure, strength, walking, & balance

I. illinois.edu

Recumbent Stepper Training

Hass et al 2001; Johnson et al 2002; Page et al 2008; Sage & Almeida 2009

- Primary outcomes:
 - Safety: stepper 2 AEs; BWSTT 5 AEs
 - Compliance: ~89% for both groups
 - Equipment preferred: recumbent stepper
- Secondary outcomes:
 - Improved fatigue and QOL in both groups
 - No change in function both groups
 - Higher training heart rate in stepper group

Illinois.edu

Recumbent Stepper Training

- Long-term potential:
 - Relatively cost-effective
 - Simple to use
 - Self-driven training
 - Available in many community settings
 - Potential for home use, although large piece of equipment

Illinois.edu

Potential Approaches for Exercise

- 1. Body-weight supported treadmill
- 2. Recumbent stepper
- 3. Adapted home-based resistance exercise
- 4. Functional electrical stimulation cycling

Home-Based Resistance Training

• Approach:

illinois.edu

- Adapted, resistance training exercises suitable for home setting
- Resistance = bands, free weights, body weight
- Target strength loss

Evidence: – One previous study in mod-advanced MS

Home-Based Resistance Training

- Benefits in mild-mod MS and general population
- Project RETRO:

1

illinois.edu

- Design: 6-month, home-based resistance training program, using elastic bands (vs no exercise control)
 Goals:
 - 1. Safety and efficacy
 - 2. Secondary benefits

Approximate in the image in the image. Provided by the image in the image. Image in the image. Image in the image in th

Behavioral Strategies

- Tools to help maximize program adherence and the potential benefits from exercise
- E.g., self-monitoring, goal setting
- Part of group-based sessions

Illinois.edu

RETRO: Results

• Participants:

- 12 completed (5 exercise/7 control)
- Age = 59.1 ± 8.2 years
- Disease duration = 19.1 ± 10.1 years
- EDSS = 6.5 (i.e., constant bilateral assistance)

Safety:

- 1 shoulder injury, 1 fall, 2 relapses
- Compliance:
 - ~45 sessions over 24 weeks
- Illinnis.edu

Outcome	Control	Exercise	Р	n_p^2	d
Grip strength, kg	27.8 (0.5)	27.7 (0.6)	.92	.001	01
Knee extensors, Nm	85.8 (6.7)	85.7 (8.1)	.99	<.00 1	<00
Knee flexors, Nm	29.2 (2.1)	31.4 (2.3)	.50	.06	.38
Shoulder extensors, Nm	35.4 (2.0)	34.0 (2.4)	.66	.02	12
Shoulder flexors, Nm	38.5 (3.6)	47.5 (4.2)	.13	.23	.46
Ankle dorsiflexors, Nm	17.8 (1.4)	17.5 (1.5)	.88	.003	09
Ankle plantarflexors, Nm	52.0 (7.9)	66.6 (8.7)	.27	.15	.52
Whole body lean mass, g	42188.0 (952.5)	43093.5 (1127.1)	.55	.04	.08
Skeletal muscle mass, g	18475.7 (461.8)	18906.7 (546.44)	.56	.04	.08

Home-Based Resistance Training

- Long-term potential: - Cost effective
 - Easily implemented in
 - home/community settings
 - Strategies for promoting compliance and homemonitoring should be considered

1 illinois.edu

Potential Approaches for Exercise

- 1. Body-weight supported treadmill
- 2. Recumbent stepper
- 3. Adapted home-based resistance exercise
- 4. Functional electrical stimulation cycling

FES Cycling

• Evidence:

- Benefits largely established in SCI and stroke • Improved walking, gait, strength, spasticity, bone & skin health, metabolism, cardiovascular function

- MS studies (n=4)

- Preliminary benefits: walking, gait, strength, muscle mass and metabolism, quality of life
- Limitations: Small samples (8-12 people), no

Fornusek & Hoang 2014: Ratchford et al 2010: Revnolds et al 2015: Szecsi et al 2009

control condition, short-term training

Other Rehabilitation Considerations

- New approaches can be combined with other strategies:
 - Physical and occupational therapy
 - Assistive devices and orthoses
 - Medical and surgical therapies

